BMæ6(( °  úúÿ–ú–ú–úúúÿ–ú–ú–úúúÿúúÿúúÿúúÿúúÿ–d –d –d úúÿúúÿúúÿúúÿúúÿddddddúúÿdddúúÿddddddúúÿúúÿúúÿ–2–2–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–ú–úúúÿúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿdddúúÿdddúúÿdddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿdddúúÿdddúúÿdddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿ–d –d –d úúÿúúÿúúÿúúÿdddúúÿdddúúÿdddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿdddúúÿdddúúÿdddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿ–2úúÿúúÿ–úúúÿúúÿ–úúúÿúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿdddúúÿdddúúÿdddúúÿúúÿúúÿúúÿúúÿ–2–2–2–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿddddddúúÿddddddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿddddddúúÿddddddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿ–úúúÿúúÿúúÿ–úúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿddddddúúÿddddddúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿ–ú–ú–úúúÿ–ú–ú–úúúÿúúÿúúÿúúÿúúÿ–d –d –d –d úúÿúúÿúúÿúúÿdddddddddúúÿdddddddddúúÿúúÿúúÿ–2–2–2–2–2–2úúÿúúÿúúÿ