BMæ6(( °  úúÿ––––––úúÿúúÿúúÿúúÿúúÿ2–2–2–2–2–2–úúÿúúÿúúÿ–––úúÿ–––úúÿúúÿúúÿúúÿ–2–2–2–2–2úúÿúúÿúúÿúúÿúúÿ–úúÿúúÿúúÿúúÿ–úúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ–úúÿúúÿúúÿ–úúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿ–úúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2–2úúÿúúÿúúÿúúÿúúÿ––––úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿ–––úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2–2úúÿúúÿ–2úúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿ–úúÿ–úúÿúúÿúúÿúúÿúúÿ–2úúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿ–úúÿúúÿ–úúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–úúÿúúÿúúÿúúÿ–úúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿ–úúÿúúÿúúÿ–úúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿ––––––úúÿ–úúÿúúÿúúÿ2–2–2–2–2–2–úúÿúúÿúúÿ–––úúÿ–––úúÿúúÿúúÿúúÿúúÿ–2–2–2–2–2úúÿúúÿ